Application of K-Means Algorithm for Efficient Customer Segmentation: A Strategy for Targeted Customer Services

نویسندگان

  • Chinedu Pascal Ezenkwu
  • Simeon Ozuomba
  • Constance kalu
چکیده

The emergence of many business competitors has engendered severe rivalries among competing businesses in gaining new customers and retaining old ones. Due to the preceding, the need for exceptional customer services becomes pertinent, notwithstanding the size of the business. Furthermore, the ability of any business to understand each of its customers’ needs will earn it greater leverage in providing targeted customer services and developing customised marketing programs for the customers. This understanding can be possible through systematic customer segmentation. Each segment comprises customers who share similar market characteristics. The ideas of Big data and machine learning have fuelled a terrific adoption of an automated approach to customer segmentation in preference to traditional market analyses that are often inefficient especially when the number of customers is too large. In this paper, the kMeans clustering algorithm is applied for this purpose. A MATLAB program of the k-Means algorithm was developed (available in the appendix) and the program is trained using a zscore normalised two-feature dataset of 100 training patterns acquired from a retail business. The features are the average amount of goods purchased by customer per month and the average number of customer visits per month. From the dataset, four customer clusters or segments were identified with 95% accuracy, and they were labeled: High-Buyers-Regular-Visitors (HBRV), High-Buyers-Irregular-Visitors (HBIV), Low-BuyersRegular-Visitors (LBRV) and Low-Buyers-Irregular-Visitors (LBIV). Keywords—machine learning; data mining; big data; customer segmentation; MATLAB; k-Means algorithm; customer service; clustering; extrapolation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted Marketing in Herbal Medicine; Application for Grounded Theory and K- Mean Algorithm

One of the major industries to meet the expansion goals in human, social, and economic aspects is herbal medicine. Marketing department, producers, and entrepreneurs play an important role in applying potentials in this industry, but, as herbal medicine scholars argue, herbal medicine market share in Iran is less than 4 percent. This might be due to neglecting executive targeted marketing. The ...

متن کامل

Mining the Banking Customer Behavior Using Clustering and Association Rules Methods

  The unprecedented growth of competition in the banking technology has raised the importance of retaining current customers and acquires new customers so that is important analyzing Customer behavior, which is base on bank databases. Analyzing bank databases for analyzing customer behavior is difficult since bank databases are multi-dimensional, comprised of monthly account records and daily t...

متن کامل

Customer Behavior Mining Framework (CBMF) using clustering and classification techniques

The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...

متن کامل

Predicting Customer Churn Using CLV in Insurance Industry

Today, increased level of customer awareness caused themto access to the other suppliers easily and they can get their servicesfrom the competitors with similar or even better quality and same price.Therefore, focusing on customers and preventing them to leave, has beenthe most important strategy for any company. Researches have shownthat retaining former customers is cheaper than attracting ne...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015